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Background and Objective

Background

Individual handwriting variations make feature extraction crucial for imitation and
enhancing recognition and signature authentication.
However, there are two main challenges:

1 Annotated handwriting datasets with varied styles are labor-intensive to acquire.
2 Individual variability in calligraphic styles like character shape, stroke thickness, writing slant,

and ligature is difficult to be represented in data.
Facing the above two challenges,

1 Scholars usually use the largest handwriting dataset IAM[1] for training their generative
models.

2 CNN-base style encoders are typically used to extract features from handwriting images (e.g.
HiGAN[2], TextStyleBrush[3], GANwriting[4]).
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Background and Objective

Objective

To enhance the performance of handwriting feature extraction, our objectives include:
1 Enriching the dataset through an automated processing pipeline. This approach not

only saves labor and time but also rapidly acquires a wealth of annotated handwriting word
images essential for training models.

2 Experimenting with alternative frameworks for the style encoder to optimize
handwriting feature extraction. This allows us to explore innovative methods to enhance
feature accuracy and adaptability, potentially leading to more robust and versatile
handwriting analysis models.
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Data Collection

Data Collection Process

IAM dataset[1]: created by having
around 400 participants handwrite
sections from the LOB corpus onto
forms. These forms were then scanned
to produce the dataset.
Our pipeline: Pros & Cons:

1 Automated labeling.
2 Efficient image processing process.
3 Scalable to large data sets.
4 Primary limitation: demands manual

intervention to correct OCR
mislabeling, particularly when high
accuracy is critical.

Figure: Our Data Collection Pipeline
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Data Collection

Overview of Two Datasets

IAM dataset[1]: Selected data contains 63401 word-level images from 500 writers.
Our dataset: 22514 word-level images from 385 writers.
We merge the IAM dataset with ours for training GAN models.

Figure: IAM dataset Figure: Our dataset
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Methodology

Methodology

Traditional CNN feature extraction network: Use convolution to analyse and extract
the local features, and usually constructs a series of residual blocks that allow for deeper
networks by enabling training without severe degradation in performance.
Shortcomings of pure CNN: hard to correlate length-variant data
Our Solution: Experiment the RNN-based method LSTM and the more advanced
structure Transformer to extract content-independent features from handwriting
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Methodology

Methodology

Vision Transformer: Using Transformer to learn the features
of the images.
Conv Transformer: Also using the same blocks, wanting to
act as a part of Recognizer.
Transformer Block Framework:

– Embedded Patches: The input image is converted into a series
of embedded vectors, representing small patches in the image.

– Layer Norm: Stabilize the training process and speed up
convergence to prevent gradient explosion.

– Multi-head: Using multi-head self-attention to learn the
features.

– Add: The same principle as Resnet.
– MLP: Increase the nonlinear processing capability of the model.
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Methodology

Methodology

RNN Structure: LSTM
In Long Short-Term Memory (LSTM) networks, the
hidden state is an important component that
captures information about the sequence processed
so far.
Input
Encoded frames were obtained from the
preprocessing of the handwriting sample (in our
experiment, a simple CNN network).
Feature representation
Take the hidden state of the LSTM network of the
last frame as the feature vector.
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Experiment

Experiment

We tested our feature extraction model on a writer classification task.
1 HiGANplus(2022)[2] + IAM dataset
2 HiGANplus(2022)[2] + IAM & Our dataset
3 Our Feature Extraction Model + IAM & Our dataset

Figure: Accuracy Results

Method Accuracy

Our model on merged dataset 91.15%
Higan+ on merged dataset 90.07%

Higan+ on IAM dataset 87.08%

Table: Comparison of methods
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Experiment

Experiment

Apply to Handwriting Generative Model Based on GAN
– Pipeline

Style Encoder & Writer Identifier: Our feature extraction
network
Generator & Discriminator: Generate images according to the
input letters and the style, then distinguish between real and
fake handwriting images. GAN part structure modified from
HiGAN+[2].
Recognizer: OCR module, evaluating the accuracy of the
generated image.

– Training
Pre-train Writer Identify and Recognizer on our data set.
Discriminator and Generator act the same roles in GAN and
solve the minimax problem.
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Experiment

Experiment

Representative generated results:

Remark: These results are preliminary and subject to further validation
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Conclusion

Conclusion

Completed Work
With our OCR-based pipeline, we successfully collected tens of thousands of word-level
annotated images, enriching the existing handwriting dataset.
With the LSTM-based style encoder, the modified HiGAN+ model successfully generated
realistic handwriting images with desired calligraphic styles.

Ongoing Work
Augment the epoch count, thereby facilitating deeper convergence.
Refine the Transformer architecture, concomitantly delving into its interpretative facets to
unravel underlying mechanisms.
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Future Work

Future Work

Extract writing styles from images with
intricate background details, facilitating
text transfer.

Retain the RGB information of images
when extracting features of handwriting
text or even scene text images.
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Future Work
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